skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Corr, Chelsea A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Wildfire smoke is frequently present over the U.S. during the agricultural growing season and will likely increase with climate change. Studies of smoke impacts have largely focused on air quality and human health; however, understanding smoke's impact on photosynthetically active radiation (PAR) is essential for predicting how smoke affects plant growth. We compare surface shortwave irradiance and diffuse fraction (DF) on smoke‐impacted and smoke‐free days from 2006 to 2020 using data from multifilter rotating shadowband radiometers at 10 U.S. Department of Agriculture UV‐B Monitoring and Research Program stations and smoke plume locations from operational satellite products. On average, 20% of growing season days are smoke‐impacted, but smoke prevalence increases over time (r = 0.60,p < 0.05). Smoke presence peaks in the mid to late growing season (i.e., July, August), particularly over the northern Rocky Mountains, Great Plains, and Midwest. We find an increase in the distribution of PAR DF on smoke‐impacted days, with larger increases at lower cloud fractions. On clear‐sky days, daily average PAR DF increases by 10 percentage points when smoke is present. Spectral analysis of clear‐sky days shows smoke increases DF (average: +45%) and decreases total irradiance (average: −6%) across all six wavelengths measured from 368 to 870 nm. Optical depth measurements from ground and satellite observations both indicate that spectral DF increases and total spectral irradiance decreases with increasing smoke plume optical depth. Our analysis provides a foundation for understanding smoke's impact on PAR, which carries implications for agricultural crop productivity under a changing climate. 
    more » « less